Advancements in Decision-Making and Data Analytics: Case Applications
Hiç mesaj bulunmadı
Taksit | Tutar | Toplam |
---|---|---|
Tek Çekim | 365.75 TL | 365.75 TL |
2 Taksit | 182.88 TL | 365.75 TL |
3 Taksit | 128.01 TL | 384.04 TL |
4 Taksit | 96.92 TL | 387.70 TL |
Ödeme Türü | Toplam Tutar |
---|---|
Diğer Kredi Kartları | 365.75 TL |
Havale / Eft | 365.75 TL |
Posta Çeki | 365.75 TL |
Kapıda Ödeme | 380.75 TL |
Kapıda ödemeli siparişlerde +15,00TL kapıda ödeme hizmet bedeli ilave edilir. |
- Vade farksız taksitler KOYU renkte gösterilmektedir.
- X+X şeklinde belritilen taksitler (Örneğin: 2+3) 2 taksit olarak işleme alınmakta ancak ilgili bankanın kampanyası dahilinde 2 taksit üzerinden işlem yapıldığı halde 2+3 yani 5 taksit olarak kartınıza ve ödemenize yansımaktadır. (2 taksit seçilmiş olsa bile banka kampanyası dahilinde ekstradan vade farkı eklenmeden işlem 5 taksite bölünmektedir.)
Advancements in Decision-Making and Data Analytics: Case Applications
Decision-making processes have become increasingly critical in the face of complex global dynamics and the era of big data. Advanced analytical methods and multi-criteria decision-making (MCDM) approaches facilitate more informed and optimized decisions across various domains. In this context, the scientific book titled Advancements in Decision-Making and Data Analytics: Case Applications brings together significant studies that explore innovations in decision-making and data analytics. By focusing on the applied aspects of decision and data analytics, this book serves as a comprehensive resource for academics and professionals. The chapters encompass both theoretical approaches and real-world applications, presenting original research contributions. The first chapter examines the LOPCOW method and a novel RAM-based MCDM methodology in the context of university rankings. The evaluation of university performance plays a crucial role in shaping educational policies, and this study contributes to the literature by proposing a new integrated model. The second chapter analyzes the assessment of logistics performance in emerging markets using the CILOS and MOORA methods. Logistics is a fundamental pillar of global trade, and effective decision-support mechanisms are essential for gaining a competitive advantage. The third chapter focuses on enhancing decision-making processes through machine learning and data analytics techniques. By conducting sentiment analysis on user reviews, this study highlights the role of big data analytics in decision-making.